Среднее значение альтернативного признака и его дисперсия:

Среднее значение альтернативного признака

Дисперсия альтернативного признака

Подставив в формулу дисперсииq = 1 – p , получим:

Таким образом, дисперсия альтернативного признака равна произведению доли единиц , обладающих данным признаком и доли единиц, не обладающих данным признаком.

Среднее квадратическое отклонение альтернативного признака:

Вариация альтернативного признака заключается в наличии или отсутствии изучаемого свойства у единиц совокупности. Количественно вариация альтернативного признака выражается двумя значениями: наличие у единицы изучаемого свойства обозначается единицей (1), а его отсутствие - нулем (0). Долю единиц, обладающих изучаемым признаком, обозначают буквой , а долю единиц, не обладающих этим признаком - через . Учитывая, что p + q = 1 (отсюда q = 1 - p), а среднее значение альтернативного признака равно

,

средний квадрат отклонений

Таким образом, дисперсия альтернативного признака равна произведению доли единиц, обладающих данным свойством (), на долю единиц, данным свойством не обладающих ().

Максимальное значение средний квадрат отклонения (дисперсия) принимает в случае равенства долей, т.е. когда т.е. . Нижняя граница этого показателя равна нулю, что соответствует ситуации, при которой в совокупности отсутствует вариация. Среднее квадратическое отклонение альтернативного признака:

Выборочное наблюдение, преимущества и недостатки.

Выборочное наблюдение – одно из наиболее современных видов статистического наблюдения, при котором обследованию подвергается часть единиц изучаемой совокупности, отобранных на основе научно разработанных принципов, обеспечивающих получение достаточного количества достоверных данных, для того чтобы охарактеризовать всю совокупность в целом.

Средние и относительные показатели, полученные на основе выборочных данных, должны достаточно полно воспроизводить соответствующие показатели совокупности в целом.

Основные преимущества выборочного наблюдения в том, что его можно осуществить по более широкой программе, оно более дешевое с точки зрения затрат на его проведение, и его можно организовать тогда и в тех случаях, когда отчетностью мы воспользоваться не можем.

Основными недостатками является то, что полученные данные всегда содержат в себе ошибку, и о результатах наблюдения можно судить лишь с определенной степенью достоверности. А также для его проведения требуются квалифицированные кадры.

Способы формирование выборочной совокупности.

В статистике применяются различные способы формирования выборочных совокупностей, что обусловливается задачами исследования и зависит от специфики объекта изучения.

Основным условием проведения выборочного обследования является предупреждение возникновения систематических ошибок, возникающих вследствие нарушения принципа равных возможностей попадания в выборку каждой единицы генеральной совокупности. Предупреждение систематических ошибок достигается в результате применения научно обоснованных способов формирования выборочной совокупности.

Существуют следующие способы отбора единиц из генеральной совокупности:

1) индивидуальный отбор - в выборку отбираются отдельные единицы;

2) групповой отбор - в выборку попадают качественно однородные группы или серии изучаемых единиц;

3) комбинированный отбор - это комбинация индивидуального и группового отбора.

Способы отбора определяются правилами формирования выборочной совокупности.

Выборка может быть:

Собственно-случайная состоит в том, что выборочная совокупность образуется в результате случайного (непреднамеренного) отбора отдельных единиц из генеральной совокупности. При этом количество отобранных в выборочную совокупность единиц обычно определяется исходя из принятой доли выборки. Доля выборки есть отношение числа единиц выборочной совокупности n к численности единиц генеральной совокупности N, т.е.

§ механическая состоит в том, что отбор единиц в выборочную совокупность производится из генеральной совокупности, разбитой на равные интервалы (группы). При этом размер интервала в генеральной совокупности равен обратной величине доли выборки. Так, при 2%-ной выборке отбирается каждая 50-я единица (1:0,02), при 5%-ной выборке - каждая 20-я единица (1:0,05) и т.д. Таким образом, в соответствии с принятой долей отбора, генеральная совокупность как бы механически разбивается на равновеликие группы. Из каждой группы в выборку отбирается лишь одна единица.

§ типическая – при которой генеральная совокупность вначале расчленяется на однородные типические группы. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность. Важной особенностью типической выборки является то, что она дает более точные результаты по сравнению с другими способами отбора единиц в выборочную совокупность;

§ серийная - при которой генеральную совокупность делят на одинаковые по объему группы - серии. В выборочную совокупность отбираются серии. Внутри серий производится сплошное наблюдение единиц, попавших в серию;

Комбинированная - выборка может быть двухступенчатой. При этом генеральная совокупность сначала разбивается на группы. Затем производят отбор групп, а внутри последних осуществляется отбор отдельных единиц.

В статистике различают следующие способы отбора единиц в выборочную совокупность:

§ одноступенчатая выборка - каждая отобранная единица сразу же подвергается изучению по заданному признаку (собственно-случайная и серийная выборки);

Многоступенчатая выборка - производят подбор из генеральной совокупности отдельных групп, а из групп выбираются отдельные единицы (типическая выборка с механическим способом отбора единиц в выборочную совокупность).

Кроме того различают:

§ повторный отбор – по схеме возвращенного шара. При этом каждая попавшая в выборку единица иди серия возвращается в генеральную совокупность и поэтому имеет шанс снова попасть в выборку;

ПОКАЗАТЕЛИ ВАРИАЦИИ

Методические указания к решению задач

По теме «Показатели вариации»

Для измерения степени варьирования (колеблемости) признака служит вариация, показателями которой являются: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, средний квадрат отклонений (дисперсия), коэффициент вариации.

Размах вариации

Размах вариации (R ) характеризует пределы вариации (изменения) индивидуальных значений (или вариантов) признака (x ) в статистической совокупности

где - наибольшее и наименьшее значение признака.

Среднее линейное отклонение

Среднее линейное отклонение вычисляется по формулам средней арифметической:

Простой (невзвешенной)

,

где - i -е значение признака x ;

Средняя величина признака x ;

Статистический вес i -го значения признака;

n - число членов совокупности;

Взвешенной

Среднее квадратическое отклонение

Среднее квадратическое отклонение рассчитывается по формулам:

Невзвешенной

Взвешенной

Дисперсия количественного признака

Дисперсия количественного признака определяется по формулам средней арифметической:

Невзвешенной

Взвешенной

Дисперсия может быть рассчитана следующим образом:

где - средний квадрат значений признака;

Квадрат средней величины признака.

Свойства дисперсии количественного признака

1. При уменьшении или увеличении весов (частот) варьирующего признака в K раз дисперсия не изменяется

2. При уменьшении или увеличении каждого значения признака на одну и ту же постоянную величину А дисперсия не изменяется

где - среднее значение признака (x - A ).

3. При уменьшении или увеличении каждого значения признака в одинаковое число K раз дисперсия уменьшается или увеличивается в K 2 раз, а среднее квадратическое отклонение - в K раз



где - среднее значение признака xK .

4. Дисперсия признака относительно произвольной величины A всегда больше дисперсии относительно средней арифметической на квадрат разности между средней и произвольной величиной

Доказательство:

Дисперсия относительно средней величины

Вычисление дисперсии способом моментов

Метод упрощенного расчета дисперсии осуществляется по формуле

и называется способом моментов.

Показатели m 1 , m 2 представляют собой моменты первого и второго порядка и рассчитываются следующим образом

Доказательство:

Дисперсии количественного признака в совокупности,

Разделенной на группы

Для анализа связей количественных признаков в статистической совокупности, разделенной на группы, рассчитываются следующие дисперсии: групповая, межгрупповая, внутригрупповая и общая.

Групповая дисперсия (частная) характеризует вариацию признака в группе, обусловленную действием на него всех прочих факторов, кроме признака, положенного в основание группировки (группировочного признака):

где - i -е значение признака в j -й группе;

Частная (групповая) средняя величина признака в j -й группе;

Статистический вес i -го значения признака в j -й группе;

Число различных значений признака в j -й группе.

Межгрупповая дисперсия измеряет степень колеблемости (вариацию) признака во всей статистической совокупности за счет фактора, положенного в основание группировки (группировочного признака):

где - среднее значение признака в совокупности (общая средняя);

Вес j -й группы, представляющий собой численность единиц в j

J - количество групп в статистической совокупности.

Внутригрупповая дисперсия (средняя групповых дисперсий) измеряет степень колеблемости признака во всей совокупности в целом за счет действия на него всех прочих факторов (признаков), кроме группировочного признака:

Общая дисперсия измеряет степень колеблемости признака, за счет влияния всех действующих на него факторов:

Общая дисперсия признака в статистической совокупности, разделенной на группы, может быть определена по основной формуле дисперсии

Межгрупповая и общая дисперсии применяются для определения показателей тесноты связи показателей в совокупности, разделенной на группы.

Дисперсия качественного альтернативного признака

Для определения дисперсии альтернативного признака допустим, что общее число единиц совокупности равно n . Число единиц, обладающих изучаемым признаком - f , тогда число единиц, не обладающих изучаемым признаком, равно (n - f ) . Ряд распределения качественного (альтернативного) признака имеет следующий вид

Значение переменной Частота повторений
f n -f
Итого n

Средняя арифметическая такого ряда равна:

то есть равна относительной частоте (частости) появления изучаемого признака, которую можно обозначить через p , тогда

Доля единиц, обладающих изучаемым признаком равна p , доля единиц, не обладающих изучаемым признаком, равна q , тогда p + q = 1.

Понятие вариации

Средняя дает обобщающую характеристику всей совокупности изучаемого явления.

Вариацией признака называется различие индивидуальных значений признака внутри изучаемой совокупности.

Средняя величина является абстрактной, обобщающей характеристикой признака изучаемой совокупности, но она не показывает строение совокупности.

Средняя величина не дает представления о том, как отдельные значения изучаемого признака группируются вокруг средней, сосредоточены ли они вблизи или значительно отклоняются от неё.

Если отдельные значения признака близки к средней арифметической, то в этом случае средняя хорошо представляет всю совокупность. И наоборот.

Колеблемость отдельных значений характеризуют показатели вариации.

Термин «вариация» произошел от латинского variatio – изменение, колеблемость, различие. Однако не всякие различия принято называть вариацией.

Под вариацией в статистике понимают такие количественные изменения величины исследуемого признака в пределах однородной совокупности, которые обусловлены перекрещивающимся влиянием действия различных факторов. Различают вариацию признака в абсолютных и относительных величинах. Абсолютная – R, L, σ, σ 2 .

Показатели вариации

1 совокупность 2 совокупность
n=5 80, 100, 120, 200, 300 n=8 145, 150, 155, 160, 160, 162, 168, 180

80 100 120 x 200 300

Поэтому в этом случае возникает необходимость определить вариацию признака, т.е. соотношение отдельных значений ряда относительно друг друга.

Показатели вариации

1. Размах вариации, представляет собой разность между максимальным и минимальным значением признака.

R = X max - X min

R 1 = 300-80=220 R 2 =180-145=35

Практика: для однородной совокупности, для контроля качества продукции.

2. Показатели, учитывающие отклонения всех вариантов от средней арифметической.

а) Среднее линейное отклонение

б) Среднее квадратическое отклонение

Среднее линейное отклонение представляет собой среднее арифметическое из абсолютных значений отклонений отдельных вариантов от средней.

для не сгруппированных:

;

для сгруппированных:

Практика: с его помощью анализируется:

1. Состав работающих

2. Ритмичность производства

3. Равномерность поставок материалов

Недостаток: этот показатель усложняет расчеты вероятного типа, затрудняет применение методов математической статистики

Среднее квадратическое отклонение (стандартное) – это

для не сгруппированных данных

для сгруппированных данных

Для умеренно асимметричных распределений

Среднее квадратическое отклонение, как и среднее линейное отклонение – это абсолютный показатель, выражается в тех же единицах, что и среднее арифметическое.

Показатели среднего квадратического или среднего линейного отклонений для двух совокупностей оказываются несопоставимыми, если сами признака у этих совокупностей неодинаковы. Несопоставляются эти показатели и для разных признаков одной совокупности. Т.е. когда средние в обеих совокупностях выражены в одних и тех же единицах измерения и одинаковы, сопоставление возможно и отразит различия в вариации признака.

Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше σ, тем лучше среднее арифметическое отражает собой всю представляемую совокупность.

3. Дисперсия используется для измерения колеблемости признака. Этот показатель более объективно отражает меру вариации

для не сгруппированных

для сгруппированных

Отличительной особенностью данного показатели является то, что при возведении в квадрат удельный вес малых отклонений падает, а больших увеличивается в общей сумме отклонений.

Это тоже абсолютный показатель

Дисперсия обладает рядом свойств, некоторые из них позволяют упростить её вычисление:

1. Дисперсия постоянной величины равна 0

2. Если все варианты значений признака (x) ↓ на одно и то же число, то дисперсия не уменьшается

3. Если все варианты ↓ в одно и то же число раз (K раз), то дисперсия ↓ в К 2 раз

x f x "

x в 100 раз

Дисперсия σ равна 0,909*10000=9090

Выше был рассмотрен расчет показателей вариации для количественных признаков, но может ставиться задача оценки вариации качественных признаков . Например, при изучении качества изготовленной продукции можно разделить на годную и бракованную.

В таком случае речь идет об альтернативных признаках.

Дисперсия альтернативного признака

Альтернативными признаками называются такие, которыми одни единицы совокупности обладают, а другие нет. Например, наличие производственного стажа у абитуриентов, ученая степень у преподавателей ВУЗов и т.д. Наличие признака у единиц совокупности условно обозначаем через 1, а отсутствие – 0. х 1 =1, х 2 =0. Долю единиц, обладающих признаком (в общей совокупности) обозначаем через р, а долю единиц, не обладающих – через q. Т.е. p+q=1, q=1-p.

Рассчитаем среднее значение альтернативного признака

; ;

Т.е. среднее значение альтернативного признака равно доли единиц, обладающих данными признаками, на долю единиц, не обладающих данными признаками.

Среднее квадратическое отклонение равно Б p =

Проверяется качество: 1000 готовых изделий, 20 бракованных.

Находим долю брака: (20/1000)*100%=0,02%

Дисперсия обладает рядом свойств , которые позволяют упростить расчет.

1. Если из всех значений вариант отнять какое-то постоянное число А, то среднее квадратическое отклонение от этого не изменится.

Альтернативный признак – это признак, которым обладает часть единиц и не обладает другая часть единиц совокупности.

Дисперсия равна произведению доли (р ) на дополняющее эту долю до единицы число (q ):

где p – доля единиц, обладающих признаком;

q – доля единиц, не обладающих признаком.

Предельное значение дисперсии альтернативного признака равно 0,25 при р = 0,5.

Пример 6.1 . Из 200 студентов факультета - 60 чел. – неуспевающие.

Доля неуспевающих студентов равна p = 60 / 200 = 0,3

Доля успевающих студентов равна q = 1 – 0,3 = 0,7

Дисперсия доли равна = 0,3 · 0,7 = 0,21

Пример 6.2 . Расчет по несгруппированным данным. Имеются данные о стаже 10 работников - 1, 2, 3, 3, 4, 4, 5, 7, 9, 12. Рассчитать показатели вариации.

Составим рабочую таблицу для расчёта.

Номер работник Стаж, лет (х i ) x 2
-4
-3
-2
-2
-1
-1
Итого

Средний стаж равен лет.

Размах вариации R =12–1= 11 лет.

Далее рассчитываем отклонения от средней , и

Среднее линейное отклонение лет.

Дисперсия

Средняя из квадратов

Второй способ расчёта дисперсии = 35,4 – 5 2 = 10,4

года

Коэффициент вариации V = 3,22 / 5 = 0,645 или 64,5%

V d = 2,6 / 5 = 0,520 или 52,0%.

Пример 6.3 . Расчёт по интервальному вариационному ряду.

Имеются данные о распределении рабочих по зарплате

Решение: Составим рабочую таблицу для расчёта.

Зарплата f Середина интервала (х ) x i ·f i
до 10 -21
10–20 -11
20–30 -1
30–40
40 и более
Итого

Средняя зарплата тыс.руб.

Среднее линейное отклонение тыс.руб.

Дисперсия

Среднее квадратическое отклонение тыс.руб.

Коэффициент вариации V = 12,45 / 26 = 0,479 или 47,9%

Линейный коэффициент вариации: V d = 10,36 / 26 = 0,398 или 39,8%.

Виды дисперсий

Общая дисперсия s 2 измеряет вариацию результативного признака (y ) во всей совокупности под влиянием всех факторов (x 1 , x 2 , x 3 …) обусловивших эту вариацию.

Межгрупповая дисперсия характеризует систематическую вариацию, т.е. различия в величине изучаемого признака, возникающие под влиянием признака-фактора (x ), положенного в основание группировки. Она рассчитывается по формуле

,

где `y i и n i - соответственно групповые средние и численности по отдельным группам.

Внутригрупповая дисперсия () отражает случайную вариацию, т. е. часть вариации, происходящую под влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Она исчисляется следующим образом:

Средняя из внутригрупповых дисперсий ():

Существует закон, связывающий три вида дисперсии. Общая дисперсия равна сумме средней из внутригрупповых и межгрупповой дисперсией:

В статистическом анализе широко используется показатель, представляющий собой долю межгрупповой дисперсии в общей дисперсии. Он носит название эмпирического коэффициента детерминации ():

.

Этот коэффициент показывает долю (удельный вес) общей вариации изучаемого признака обусловленную вариацией группировочного признака.

Корень квадратный из эмпирического коэффициента детерминации носит название эмпирического корреляционного отношения (h ):

.

Оно характеризует влияние признака, положенного в основание группировки, на вариацию результативного признака. Эмпирическое корреляционное отношение изменяется в пределах от 0 до 1. Если h = 0, то группировочный признак не оказывает влияние на результативный. Если h = 1, то результативный признак изменяется только в зависимости от признака, положенного в основание группировки, а влияние прочих факторных признаков равно нулю. Промежуточные значения оцениваются в зависимости от их близости к предельным значениям.

Пример 6.4 . Имеются данные о группе рабочих.

Оценить силу связи между признаками.

Решение: Даны групповые средние и внутригрупповые дисперсии.

Определим среднюю общую используя групповые средние

Средняя из внутригрупповых дисперсий

Межгрупповая дисперсия

Общая дисперсия s 2 =6,955 + 34,65 = 41,605

Эмпирический коэффициент детерминации

34,65 / 41,605 = 0,833

Эмпирическое корреляционное отношение

Такое значение (близко к 1) характеризует очень сильную связь между числом обслуживаемых станков и средней зарплатой.

Вариация — это различия индивидуальных значений признака у единиц изучаемой совокупности. Исследование вариации имеет большое практическое значение и является необходимым звеном в экономическом анализе. Необходимость изучения вариации связана с тем, что средняя, являясь равнодействующей, выполняет свою основную задачу с разной степенью точности: чем меньше различия индивидуальных значений признака, подлежащих осреднению, тем однороднее совокупность, а, следовательно, точнее и надежнее средняя, и наоборот. Следовательно по степени вариации можно судить о границах вариации признака, однородности совокупности по данному признаку, типичности средней, взаимосвязи факторов, определяющих вариацию.

Изменение вариации признака в совокупности осуществляется с помощью абсолютных и относительных показателей.

Абсолютные показатели вариации включают:

Размах вариации (R)

Размах вариации — это разность между максимальным и минимальным значениями признака

Он показывает пределы, в которых изменяется величина признака в изучаемой .

Пример . Опыт работы у пяти претендентов на предшествующей работе составляет: 2,3,4,7 и 9 лет.
Решение: размах вариации = 9 — 2 = 7 лет.

Для обобщенной характеристики различий в значениях признака вычисляют средние показатели вариации, основанные на учете отклонений от средней арифметической. За отклонение от средней принимается разность .

При этом во избежании превращения в нуль суммы отклонений вариантов признака от средней (нулевое свойство средней) приходится либо не учитывать знаки отклонения, то есть брать эту сумму по модулю , либо возводить значения отклонений в квадрат

Среднее линейное и квадратическое отклонение

Среднее линейное отклонение — это из абсолютных отклонений отдельных значений признака от средней.

Среднее линейное отклонение простое:

Опыт работы у пяти претендентов на предшествующей работе составляет: 2,3,4,7 и 9 лет.

В нашем примере: лет;

Ответ: 2,4 года.

Среднее линейное отклонение взвешенное применяется для сгруппированных данных:

Среднее линейное отклонение в силу его условности применяется на практике сравнительно редко (в частности, для характеристики выполнения договорных обязательств по равномерности поставки; в анализе качества продукции с учетом технологических особенностей производства).

Среднее квадратическое отклонение

Наиболее совершенной характеристикой вариации является среднее квадратическое откложение, которое называют стандартом (или стандартным отклонение). () равно квадратному корню из среднего квадрата отклонений отдельных значений признака от :

Среднее квадратическое отклонение простое:

Среднее квадратическое отклонение взвешенное применяется для сгруппированных данных:

Между средним квадратическим и средним линейным отклонениями в условиях нормального распределения имеет место следующее соотношение: ~ 1,25.

Среднее квадратическое отклонение, являясь основной абсолютной мерой вариации, используется при определении значений ординат кривой нормального распределения, в расчетах, связанных с организацией выборочного наблюдения и установлением точности выборочных характеристик, а также при оценке границ вариации признака в однородной совокупности.

Дисперсия

Дисперсия - представляет собой средний квадрат отклонений индивидуальных значений признака от их средней величины.

Дисперсия простая:

В нашем примере:

Дисперсия взвешенная:

Более удобно вычислять дисперсию по формуле:

которая получается из основной путем несложных преобразований. В этом случае средний квадрат отклонений равен средней из квадратов значений признака минус квадрат средней.

Для несгрупиированных данных:

Для сгруппированных данных:

Вариация альтернативного признака заключается в наличии или отсутствии изучаемого свойства у единиц совокупности. Количественно вариация альтернативного признака выражается двумя значениями: наличие у единицы изучаемого свойства обозначается единицей (1), а его отсутствие — нулем (0). Долю единиц, обладающих изучаемым признаком, обозначают буквой , а долю единиц, не обладающих этим признаком — через . Учитывая, что p + q = 1 (отсюда q = 1 — p), а среднее значение альтернативного признака равно

,

средний квадрат отклонений

Таким образом, дисперсия альтернативного признака равна произведению доли единиц, обладающих данным свойством (), на долю единиц, данным свойством не обладающих ().

Максимальное значение средний квадрат отклонения (дисперсия) принимает в случае равенства долей, т.е. когда т.е. . Нижняя граница этого показателя равна нулю, что соответствует ситуации, при которой в совокупности отсутствует вариация. Среднее квадратическое отклонение альтернативного признака:

Так, если в изготовленной партии 3% изделий оказались нестандартными, то дисперсия доли нестандартных изделий , а среднее квадратическое отклонение или 17,1%.

Среднее квадратическое отклонение равно квадратному корню из среднего квадрата отклонений отдельных значений признака от средней арифметической.

Относительные показатели вариации

Относительные показатели вариации включают:

Сравнение вариации нескольких совокупностей по одному и тому же признаку, а тем более по различным признакам с помощью абсолютных показателей не представляется возможным. В этих случаях для сравнительной оценки степени различия строят относительные показатели вариации. Они вычисляются как отношения абсолютных показателей вариации к средней:

Рассчитываются и другие относительные характеристики. Например, для оценки вариации в случае асимметрического распределения вычисляют отношение среднего линейного отклонения к медиан

так как благодаря свойству медианы сумма абсолютных отклонений признака от ее величины всегда меньше, чем от любой другой.

В качестве относительной меры рассеивания, оценивающей вариацию центральной части совокупности, вычисляют относительное квартильное отклонение , где — средний квартиль полусуммы разности третьего (или верхнего) квартиля () и первого (или нижнего) квартиля ().

На практике чаще всего вычисляют коэффициент вариации. Нижней границей этого показателя является нуль, верхнего предела он не имеет, однако известно, что с увеличением вариации признака увеличивается и его значение. Коэффициент вариации является в известном смысле критерием однородности совокупности (в случае нормального распределения).

Рассчитаем коэффициент вариации на основе среднего квадратического отклонения для следующего примера. Расход сырья на единицу продукции составил (кг): по одной технологии при , а по другой — при. Непосредственное сравнение величины средних квадратических отклонений могло бы привести к неверному представлению о том, что вариация расхода сырья по первой технологии интенсивнее, чем по второй (. Относительная мера вариации ( позволяет сделать противоположный вывод

Пример расчета показателей вариации

На этапе отбора кандидатов для участия в осуществлении сложного проекта фирма объявлила конкурс профессионалов. Распределение претендентов по опыту работы показало средующие результаты:

Вычислим средний производственный опыт работы, лет

Рассчитаем дисперсию по продолжительности опыта работы

Такой же результат получается, если использовать для расчета другую формулу расчета дисперсии

Вычислим среднее квадратическое отклонение, лет:

Определим коэффициент вариации, %:

Правило сложения дисперсий

Для оценки влияния факторов, определяющих вариацию, используют прием группировки: совокупность разбивают на группы, выбрав в качестве группировочного признака один из определяющих факторов. Тогда наряду с общей дисперсией, рассчитанной по всей совокупности, вычисляют внутигрупповую дисперсию (или среднюю из групповых) и межгрупповую дисперсию (или дисперсию групповых средних).

Общая дисперсия характеризует вариацию признака во всей совокупности, сложившуюся под влиянием всех факторов и условий.

Межгрупповая дисперсия измеряет систематическую вариацию, обусловленную влиянием фактора, по которому произведена группировка:

Внутригрупповая дисперсия оценивает вариацию признака, сложившуюся по влиянием других, неучитываемых в данном исследовании факторов и независящую от фактора группировки. Она определяется как средняя из групповых дисперсий.

Все три дисперсии () связаны между собой следующим равенством, которое известно как правило сложения дисперсий:

на этом соотношении строятся показатели, оценивающие влияние признака группировки на образование общей вариации. К ним относятся эмпирический коэффициент детерминации () и эмпирическое корреляционное отношение ()

() характеризует долю межгрупоовой дисперсии в общей дисперсии:

и показывает насколько вариация признака в совокупности обусловлена фактором группировки.

Эмпирическое корреляционное отношение (!!\eta = \sqrt{ \frac{\delta^2}{\sigma^2} }

оценивает тесноту связи между изучаемым и группировочным признаками. Предельными значениями являются нуль и единица. Чем ближе к единице, тем теснее связь.

Пример. Стоимость 1 кв.м общей площади (усл.ед) на рынке жилья по десяти 17-м домам улучшенной планировки составляла:

При этом известно, что первые пять домов были построены вблизи делового центра, а остальные — на значительном расстоянии от него.

Для рассчета общей дисперсии вычислим среднюю стоимость 1 кв.м. общей площади: Общую дисперсию определим по формуле:

Вычислим среднюю стоимость 1 кв.м. и дисперсию по этому показателю для каждой группы домов, отличающихся месторасположением относительно центра города:

а) для домов, построенных вблизи центра:

б) для домов, построенных далеко от центра:

Вариация стоимости 1 кв.м. общей площади, вызванная изменением местоположения домов, определяется величиной межгрупповой дисперсии :

Вариация стоимости 1 кв.м. общей площади, обусловленная изменением остальных неучитываемых нами показателей, измеряется величиной внутригрупповой дисперсии

Найденные дисперссии в сумме дают величину общей дисперсии

Эмпирический коэффициент детерминации :

показывает, что дисперсия стоимости 1.кв.м. общей площади на рынке жилья на 81,8% объясняется различиями в расположении новостроек по отношению к деловому центру и на 18,2% — другими факторами.

Эмприческое корреляционное отношение свидетельствует о существенном влиянии на стоимость жилья месторасположения домов.

Правило сложения дисперсий для доли признака записывается так:

а три вида дисперсий доли для сгруппированных данных определяется по следующим формулам:

общая дисперсия:

Формулы межгрупповой и внутригрупповой дисперсий:

Характеристики формы распределения

Для получения представления о форме распределения используются показатели среднего уровня ( , ), показатели вариации, ассиметрии и эксцесса.

В симметричных распределениях средняя арифметическая, мода и медиана совпадают (. Если это равенство нарушается — распределение ассиметрично.

Простейшим показателем ассиметрии является разность , которая в случае правосторонней ассиметрии положительна, а при левосторонней — отрицательна.

Ассиметричное распределение

Для сравнения ассиметрии нескольких рядов вычисляется относительный показатель

В качестве обобщающих характеристик вариации используются центральные моменты распределения -го порядка , соответствующие степени, в которую возводятся отклонения отдельных значений признака от средней арифметической:

Для несгруппированных данных:

Для сгруппированных данных:

Момент первого порядка согласно свойству средней арифметической равен нулю .

Момент второго порядка является дисперсией .

Моменты третьего и четвертого порядков используются для построения показателей, оценивающих особенности формы эмпирических распределений.

С помощью момента третьего порядка измеряют степень скошенности или ассиметричности распределения.

— коэффициент ассиметрии

В симметричных распределениях , как все центральные моменты нечетного порядка.Неравенство нулю центрального момента третьего порядка указывает на асимметричность распределения. При этом, если , то асимметрия правосторонняя и относительно максимальной ординаты вытянута правая ветвь; если , то асимметрия левосторонняя (на графике это соответствует вытянутости левой ветви).

Для характеристики островершинности или плосковершинности распределения вычисляют отношение момента четвертого порядка () к среднеквадратическому отклонению в четвертой степени (). Для нормального распределения , поэтому эксцесс находят по формуле:

Для нормального распределения обращается в нуль. Для островершинных распределений , для плосковершинных .

Эксцесс распределения

Кроме показателей, рассмотренных выше, обобщающей характеристикой вариации в однородной совокупности служит определенный порядок в изменении частот распределения в соответствии с изменениями величины изучаемого признака, называемый закономерностью распределения .

Характер (тип) закономерности распределения может быть выявлен путем построения вариационного ряда на основании большого объема наблюдений, а также такого выбора числа групп и величины интегралов, при котором наиболее отчетливо могла бы проявиться закономерность.

Анализ вариационных рядов предполагает выявление характера распределения (как результата действия механизма вариации), установление функции распределения, проверку соответствия эмпирического распределения теоретическому.

Эмпирическое распределение , полученное на основе данных наблюдения, графически изображается эмпирической кривой распределения с помощью полигона.

На практике встречаются различные типы распределений, среди которых можно выделить симметричные и асимметричные, одновершинные и многовершинные.

Установить тип распределения, означает выразить механизм формирования закономерности в аналитической форме. Многим явлениям и их признакам свойственны характерные формы распределения, которые аппроксимируются соответствующими кривыми. При всем многообразии форм распределения наибольшее распространение в качестве теоретических получили нормальное распределение, распределение Пауссона, биноминальное распределение и др.

Особое место в изучении вариации принадлежит нормальному закону, благодаря его математическим свойствам. Для нормального закона выполняется правило трех сигм, по которому вариация индивидуальных значений признака находится в пределах от величины средней. При этом в границах находится около 70% всех единиц, а в пределах — 95%.

Оценка соответствия эмпирического и теоретического распределений производится с помощью критериев согласия, среди которых широко известны критерии Пирсона, Романовского, Ястремского, Колмогорова.